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METHODS FOR ACHLEVING Tv SIGNAL DELAY USING ULTRASONIC WAVES k2 

I. V. Zakharov 

Methods are considered f o r  delaying te levis ion signals f o r  
a period of a f e w  lines or  f r e s .  
sonic delay l i nes  f o r  large delay periods. 

A Sxc-.r-Tr 'J i s  mitie cf zltrc- 

Electr ic  delay l i nes  are  successfully used f o r  delaying the te lev i -  
sion signal by short intervals  of time ( a  par t  of one l i ne ) .  I n  some 
cases it is  necessary t o  produce the delay for prolonged intervals  of 
time. 
def ini t ion of the color image i s  made approximately equal by producing 
the signal of one l i ne  twice which requires a delay of the signal i n  the  
receiver f o r  a period of one l i n e  (40 p e e ) .  
the corresponding definit ions along the horizontal l i n e  a re  decreased 
due t o  the smaller bandwidth of the  color signals compared with the band- 
width of the intensi ty  signal ( R e f .  1). 
the television signal must be delayed for a period of t i m e  from one l i n e  
t o  several frames (Ref. 2). By delaying the signal it is  possible t o  in-  
crease the immunity t o  noise, and i n  t h i s  case high correlation of the 
te levis ion signal i s  ilsed. For example, the signals of adjoining frames 
differ l i t t l e  from each other and the noise i s  s t a t i s t i c a l l y  independent. 
I n  summation the signals are  aaded algebraically while the noise follows 
the mean square law. 
lines it i s  possible t o  increase the signal/noise r a t i o  t o  a t  l e a s t  3 db. 

In the SECAM color television system the horizontal and ver t i ca l  

This is  necessary because 

I n  some systems the v o i w  of ' 

By using the relation between the signals of two 

The following methods may be used t o  obtain a large time delay: 
1) magnetic recording and subsequent reproduction; 2) use of electron 
storage tubes; and 3) use of ultrasonic delay l i nes  (e.g., those used i n  
the SEAM system). 

The delay in te rva l  must vary i n  correspondence t o  the frequency of 
the l ines  and preferably i n  an automatic manner. 

The following ef fec ts  occur i n  ultrasonic delay l ines:  1) e l e c t r i c  
or magnetic osc i l la t ions  are  transformed into ultrasonic osci l la t ions;  
2) ultrasonic osci l la t ions a re  propagated i n  a so l id  body or  i n  a l iquid; 
and 3) ultrasonic osci l la t ions are  transformed in to  e l ec t r i c  or  magnetic 
osci l la t ions.  

Since the propagation of ultrasonic waves i n  the transmitting medium 

i s  much shorter than an e l ec t r i c  delay l ine .  
i s  slower compared with the velocity of l i g h t ,  the  ultrasonic delay l i n e  
( for  the same delay time 
It i s  f o r  t h i s  reason that the realization of large Z~ depends on the 

1. 
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Type of cable 

Delay time 
for 1 meter 
( IJ- se c /meter ) 

exclusive use of ultrasonic l ines .  Specially constructed cables make it 
possible t o  decrease the length of the l i n e  (Table 1). I n  cable FK-3 a 
delay by one meter corresponds t o  T = 0.7 psecimeter. The length of the 
cable necessary t o  produce a delay by one l i n e  i s  given by the eqmt5on; 

64 1 = 0.7 = 91.5 meters. 

0 0 
0 
Ln 

0 
0 
\D 
4 

8 8 
-;I 
4 

4 i !a ; i4 2 
5 5 

\ 
Ln 

CY 
f f i  

Y 

9.14 0.23 1.8 2.0 3.35 3.35 

Table 1. 

One of the experimental l i nes  has a delay time T = 30 psec/meter. 
Then 1 = 2.13 meters. 
curred i n  t h i s  l ine .  

Due t o  reflections,  considerable dis tor t ions oc- 

I n  a l l  e l ec t r i c  delay l ines  attenuation increases with frequency 
(for 10 megacycles b = 6db/psec). 
For z 

able.  

Phase dis tor t ions increase above 1 Me. 
= 40  psec the r i s e  t i m e  is  4 t o  16 psec which i s  en t i re ly  unsuit- a 

Ultrasonic Waves 

Only longitudinal waves (L-waves) a re  propagated i n  l iquids  with a 

the  coefficient of adiabatic compressibility. 

The velocity of L-waves i n  solid bodies i s  equal to: CL = (E/p)'/2 
where E i s  Young's Modulus. 

Transverse osci l la t ions take piace i n  so l id  bodies. I n  a par t icular  
case tne displacements are  exactly perpendicular t o  the direction of pro- 
pagation (S-waves). The velocity of the S-waves i s  given by the equation: 

C s  = (G/p) ' /2 

where G i s  the shear modulus. 
... 
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Cylindrical rods w i l l  a l so  support f lexura l  osc i l la t ions  and tor -  
sional osci l la t ions (T-waves) . 

If the wmelength A i s  greater than the diameter of the rod then the 
ve loc i t ies  of longitudinal and torsional osci l la t ions a0 not depend on A. 

The velocity of T-waves i s  equal t o  CT = ( ~ / p ) ' / 2  where p is  Lamay's co- 

CF = 2 s r C ~ k / A ,  where k i s  the radius of iner t ia  of the cross section f o r  
efficleiit Gf4 I .l+jLUA. by . V € 1 G Z i t y  D f  flex-xzl 72Ei-res Sepezds ex2 .I: 

very short waves. 

the velocity of Rayleigh waves (C,). 

the  velocity of tors ional  oscil lations does not depend on frequency. 
lower velocity of S-waves i s  responsible f o r  t h e i r  preferred application 
i n  the case of very large delays. 
of the velocity of ultrasonic oscil lations on frequency, r e su l t s  i n  dif- 
f erent delays a t  d i f fe ren t  frequencies. 

A s  the length i s  decreased -.;aves CF and CL approach 

For osci l la t ions of the basic type 

The 

The dispersion, i . e . ,  the  dependence 

Transducers 

The d i rec t  and inverse piezoelectric e f f ec t  i s  used t o  transform 
e l e c t r i c  osci l la t ions into ultrasonic osci l la t ions and t o  transform u l -  
trasonic osci l la t ions into e l ec t r i c  osci l la t ions.  Most frequently, quartz 

A 
2 transducers are used which resonate a t  t = - (t i s  the thickness of the 

transducer), i .e.  , f = - ke106 According t o  experimental data k = 2.87 t b d  
f o r  quartz, 1.4 f o r  Rochelle salt and 2.0 barium t i t ana te .  
ducer may operate a t  i t s  harmonic frequencies, and frequencies of %-100 
Me have been obtained. Crystals of BaTiO 

and receive shear waves. 
with quartz transducers (20 db instead of 40 ab). 

The t rans-  

( R e f .  3) a re  used t o  exci te  

These transducers have lower losses compared 

3 

Their bandpass i s  

Af wider (T = 0.4 and 0.3 f o r  quartz). The coefficient of electromecbni- 

c a l  coupling i s  greater by a factor  of 4.6. 
e l ec t r i c  materials, barium t i t ana te  i s  inexpensive to  manufacture. Prac- I 
t i c a l  applications have been made of a l loys of barium t i t ana te ,  lead 
t i t ana te ,  and calcium t i tana te .  
apply a high voltage t o  a piezoelectric radiator.  

Unlike other synthetic piezo- 

To obtain high powers it i s  necessary t o  
The power i s  

..I - 
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proportional t o  the area of the plate of the radiator.  Therefore, a t  
high frequencies the delivered power decreases. 
radiator  is  usually not loaded, the operation a t  harmonic frequencies i s  
1xxally associated with the excitation of odd harmonies. 

Since one side of the 

Magnetostrictive Transducers 

rm-- I-  -- -m 
LIX t ,rausLomtioii of i i i zge t i c  osci l la t ions into ultrasoiiic oscl l -  

l a t ions  a s  w e l l  a s  the inverse transformation of the ultrasonic waves 
into magnetic waves i s  based on the d i rec t  magnetostrictive e f f ec t s  i n  
which the var ia t ion of the magnetic flux produces the following: 
gi tudinal  osc i l la t ions ,  2) f lexural  osci l la t ions;  3 )  tors ional  osc i l la -  
t ions;  and 4) changes i n  volume. 
include the following: 1) longitudinal and transverse; 2) torsional;  
and 3) ;rolumetric. Most frequently the d i rec t  and inverse longitudinal 
e f f ec t  i s  used. The stress i s  two orders of magnitude lower than fo r  
the case of piezoelectric transducers; however, a large amount of power 
can be delivered. The principal losses i n  magnetostrictive delay l i nes  
a re  due t o  the mismatch between the vibrator and the medium (Ref. 10). 

1) lon- 

The inverse magnetostrictive e f fec ts  

The length of the rod vibrator is given by the equation: 1 = & %, 

cL where n i s  the order of the harmonic. 

I :1 + (1 - n)2, where r i s  the radius of the ring. 

For a r ing vibrator f = - 
2nr  

1- 

Rod vibrators are  used exclusively t o  excite frequencies above 100 
kc. It follows from elementary theory tha t  operation on harmonic f r e -  
quencies i s  possible, but t h i s  i s  not  t rue a t  high frequencies when the 
influence of dispersion inductance increases. The effect ive length of 
the transducer i s  increased compared with i t s  geometric length and the 
point of maximum power t ransfer  i s  displaced in to  the region of higher 
frequencies while the power transfer a t  harmonic frequencies decreases 
sharply. 
fac tor  of 15-20 ( a t  lower frequencies the power t ransfer  a t  the second 
harmonic i s  smaller by a fac tor  of 4).  
i s  increased by decreasing the dispersion inductance, and t h i s  i s  achieved 
by decreasing the number of turns and magnetically shielding the trans- 
ducer, e tc .  

Thus, the power t ransfer  a t  the second harmonic drops by a /31 
The efficiency of the transducer 

Frequencies up t o  1.5-3.0 Me have been obtained (Ref. 4).  

Since the rod which i s  made f r o m  magnetostrictive material  gets 
longer (or shorter) during any increase i n  the magnetic induction, the 
change i n  direction of induction (a change i n  the direction of the cur- 
ren t  i n  the winding) again leads t o  an increase (or decrease) i n  the 
length of the rod. A s  a r e su l t  of t h i s ,  the signal i s  differentiated.  
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1 -  

To avoid differentiation the receiving transducer i s  magnetized w i t h  a 
constant magnet while the transmitting transducer has DC current i n  i t s  
winding. For the case of supermalloy a magnetization of 100 oersteds i s  
required. 

It i s  not necessary t o  make the en t i r e  delay l ine  from the same 
material  as  the radiator (Figure 1). By using a ferromgnetic material 
f o r  the transducer with a high magnetostrictive constant and by building 
the delay l i n e  out of' metal with low d;rmDing ( for  example; Ni_apn_-C), a 
large delay may be obtained. Nispan-C i s  a nickel a l loy with low damp- 
ing. 

medium input output 

Figure 1 

Magnetostrictive transducers make it possible to  excite osc i l la t ions  
i n  a rather  large frequency range and t h e i r  bandpass i s  rather wide. 

Recently, communications have appeared on the development of piezo- 
magnetic transducers which have be t te r  performance than piezoelectric or 
magnetostrictive transducers. 
w e l l  ( R e f .  5 ) .  

Transducers using f e r r i t e s  operate very 

Liquid Delay Lines 

The widest application i s  made of mercury l i nes  with piezoelectric 
radiators.  

To decrease the length of the delay l i ne  elbowed construction i s  
used, and the direction of propagation is  changed by using ref lectors .  
Each ref lector  produces an additional attenuation of approximately 3 db. 
To obtain a greater delay mercury containers with faces a re  used (Figure 
2). 
The attenuation i n  mercury delay l ines (without ref lectors)  i s  0.0071 db/ 
psec. Other f lu ids  a re  seldom used. I n  water, f o r  example, the attenua- 
t i on  f o r  1 psec is  0.129 db. 

Delay l ines  f o r  several  milliseconds have been real ized (Ref. 6). 

Due t o  a mismatch i n  the impedance of the 

rafJ,iator (X-quartz) and the medium, t h e  relativebandpass i s  equal t o  

0.096 f o r  water and 0.89 f o r  mercury. 
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Volume f i l l e d  

Figure 2 

The disadvantage of a l l  l iquid delay l i nes  i s  the cavitation which 
OCC'JTS a t  high radiated powers (as the frequency increases the aaximm 
allowable power decreases ) . The attenuation of ultrasonic waves increases 
substant ia l ly  a t  frequencies above 10 Mc so tha t  the dimensions of even 
the smallest a i r  bubbles or gas bubbles become comparable with the wave- 
length. 

Mercury l i nes  have the following disadvantages: l o w  s t a b i l i t y ,  the 

temperature coefficient 'IC is  3010-~ l/degree; dangerous and harmful leak- 
age of mercury; and large dimensions for long delays. To decrease the 
size the diameter i s  decreased; however, t h i s  increases attenuation and 
m y  came mismatching. The necessity of operating with a car r ie r  in-  
creases the attenuation: 

where d i s  the diameter of the container, and kl and k2 are  coefficients.  

Monolithic Delay Lines 

Delay l ines  with piezoelectric excitation most frequently employ 
fused quartz. me transducers a re  quartz (X-cut) or barium t i tana te .  
Multiple ref lect ion i s  used t o  increase the delay time. 
delay l i nes  have the form of a regular o r  irregular polygon ( R e f .  7). 
To decrease the s ize  of a delay l ine  it i s  possible t o  use three- 
dimensional systems, and i n  t h i s  case, the quartz must be processed to  
opt ica l  tolerances. 
known (Ref. 13). 

Frequently, the 

Quartz l i nes  which produce a delay of 1200 p e c  a re  

/32 

A two-dimensional delay l i n e  i s  shown i n  Figure 3. If the r a t i o  of 
the length t o  the width of the l i n e  i s  p:s, where p and s a re  mutually 

ps  2 - m ,  where m = lmX/(pVs)-. 

simple numbers, the geometric length of the delay l ine  i s  ldelay - - 
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transduce? 
Sound 

Receiving k 
transducer I 0 

Fi,we 3 

P 5.  For a three-dimensional delay 64- 10 -6 3.72 - lo3 
0.05 ,;?' 

T~ = 64 psec, p = 

l i n e  f o r  4.0 psec: 
Taking the values of q, p ,  and s t o  be 39, 38, 37 respectively and speci- 
fying &, we obtain, f o r  1 = 10 cm, a distance of greater than 5 mm be- 

tween ref lect ion points f o r  a wavelength of 0.2 mm ( the lat ter i s  produced 
by the necessity of displacing the signal i n  frequency, f = 30 Mc). 
resonance curve i s  sloped because the losses increase with frequency. 

psq $ m = 2288; l e t  p q, s c q, then ps a 1320. 

The 

To obtain the long delays it i s  ra t ional  t o  apply transverse osc i l -  
la t ions.  When L-waves a re  incident on a boundary, ref lect ion waves L 1  

and SI are  formed, together with a refracted wave L ' .  S' does not occur 

i n  f l u i d s  and gases. I n  t h i s  case we have 

where 8 i s  the angle of incidence, reflection, and refraction. 

Refraction i s  absent a t  the boundary between a so l id  body and gas. 
The corresponding selection of the angle of incidence f o r  L-waves may re- 
duce the L,-wave t o  a minimum. Thus, by using ordinary quartz it i s  pos- 

sible t o  obtain S-waves. When the S-waves are  incident a t  an angle of 
45' they a re  reflected a t  the same angle and if the boundaries are  

- 
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pa ra l l e l  t h i s  angle i s  retained during a l l  reflections.  For multiple 
ref lect ion the wave t ra jectory consists of a network of equal density; 
t h i s  i s  desirable because it makes the reception of ultrasonic osc i l la -  
t ions  easier  and assists i n  controlling noise (e.g., by the use of ab- 
sorbers). 
proper configuration of loca l  boundaries, are transformed in to  L-waves. 

I n  the lat ter case the reflections of the S-waves, by the 

I n  the general case the network of t ra jec tor ies  may not be rectangu- 
la r ,  ?-?ut t5is aoes not  prodixe any ca@icatic?n,s, 

When the geometric dimensions are increased bl- a fac tor  n, attenua- 
t ion  increases proportionately; the  allowable area of the transducer, and 

consequently the &riving power, increase by a fac tor  n . Consequently, 
by properly selecting the dimensions of a delay l i n e  It i s  possible t o  
rea l ize  the required leve l  a t  i ts  output. A simpler method of generating 
S-waves consists of using a transducer f o r  converting e l ec t r i c  osc i l la -  
t ions into shear waves. Such a transducer has been produced only i n  re -  
cent years (Ref .  9). It consists of a ceramic transducer of the follow- 

3' ing composition: 

The band of the shear radiator is 1.3 times wider than that of the L-wave 
transducer. 
radiator  and the load t o  obtain such a bandpass. Let us compare the per- 
formance of delay l i n e s  with ceramic and quartz radiators: 

2 

80 percent BaTi03; 12 percent PbTi03; 8 percent CaTiO 

Usually it is  necessary t o  produce a mismatch between the 

nf = 7 Me, 
Td = 0.707 pSeC, b = 40 db and 20-24 db. 

The car r ie r  frequency i s  decreased almost by a factor  of 2, which 
accounts f o r  the sharp drop in  attenuation. 

To widen the bandpass a half-wave interlayer i s  used which matches /33 
the impedance of the transducer and the m e d i u m  ( R e f .  10). 

Tape, Cylinder, and Wire Delay Lines 

Together with monoliths, various acoustic wave guides are  used: 
rectangular (tape) and round (cylinder, tube). A s  in  the case of radio 
frequency wave guides, the range of frequencies which i s  transmitted 
over the tube i s  determined by i t s  dimensions and i s  limited in  the re -  
gion of lower and upper frequencies. Experiments show that cut  tubes 
behave the same way a s  continuous ones. I n  connection with t h i s ,  the  
t rans i t ion  t o  tape delay l i n e s  i s  indicated. 
c i l l a t ions  of various ty-pes may be produced. 
are  without aispersion while t'ne remaining types have dispersion. 

I n  these delay l i nes  os- 
Oscil lations of the 0 type 

The variation of velocity a s  a function of frequency i s  shown i n  
Figure 4. The poss ib i l i ty  of exciting a cer ta in  type of osc i l la t ion  



Figure 4 

depends on the geometry of the wave guide. 
osc i l la t ion  of the n-th type fsp i s  determined from the equation fsp = 

The cut-off frequency f o r  the 

n f s l =  ncs - where the second subscript indicates the type of osci l la t ion,  2a ' 

while 2a gives the thickness of the tape. Experiments have shown that 
f o r  torsional osci l la t ions i n  w i r e  l ines  the delay of the dispersion is  
much less than f o r  other types of oscil lations ( R e f .  12). The advantages 
of ceramic shear transducers over quartz  transducers have been confirmed. 

I n  these delay l i nes  a bandpass of 13-20 Me and a value of 'rd up t o  

16.7 milliseconds a re  achieved (Ref .  13). The problems of attenuation, 
s t a b i l i t y  and noise a re  general f o r  a l l  ultrasonic delay l ines .  

Attenuation i n  Ultrasonic Delay Lines 

Attenuation i s  determined by losses i n  the transducer and i n  the 
transmitting medium. Losses i n  the  transmitting medium depend on the 
pur i ty  and structure of the material. All impurities and heterogeneities 
i n  the structure of the substance resul t  i n  an increase of attenuation. 
I n  a l iqu id  these impurities consist of dissolved gases, a i r ,  etc. ,  while 
i n  an amorphous body (e.g., i n  fused quartz) these impurities consist  of 
f i ne  a i r  bubbles, impurities, heterogeneity i n  the density. In  c rys t a l  
bodies, coarse structure and impurities increase the attenuation. A s  the 
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Material 

wavelength A i s  decreased the losses increase and when A approaches the 
diameter of the crystals  the transmission of the signal ceases. There- 
fore ,  an increase i n  the puri ty  of the transmitting medium and i t s  proc- 
essing which leads t o  a decrease i n  the c rys ta l  s ize  ( ro l l ing ,  forging),  
pro&xes a cecrease ~n attenuation (attenuation i s  approximately propor- 
t i ona l  t o  the dimension of the "grains"). 
losses  occur due t o  overmagnetization which a re  proportional t o  the 
square of the frequency. 
frequencies attenuation increases rapidly a t  the relaxation frequencies 

The frequency of relaxation f o r  rods of diameters 0.05 mm i s  

In  ferromagnetic materials, 

These (primarily) limit the bandpass. A t  lower 

Invar Tungsten Aluminum Nickel Iron Brass 

shown i n  Table 2. 

relax in kc 

Table 2 

16.2 16.2 20.8 38 62.7 42 

In the delay o f a  wide band signal, nonmagnetic materials a re  used 
exclusively--fused quartz and aluminum alloys.  

The second source of losses i s  the mismatch between the parameters 
of the transducer and the transmitting medium; however, if ceramic t rans-  /34 
ducers a re  used instead of quartz, these losses a re  decreased by approx- 
imately 15 db. 

Temperature Stabi l izat ion and Control of Delay Time 

When the temperature changes, the delay time also changes due t o  the 
variation i n  the e l a s t i c  constancy of the medium. 

coeff ic ient  of the delay (ED) i s  

Usually the temperature 

l/degree (Table 3 ) .  

Table 3 

Material 

ED 10-4 
l/degree 

Mercury Quartz 

-1.08 1 3  

Nickel Iso-elastic I N i  span4  60 52-6H32 I 
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We can see from the table  tha t  i n  order t o  achieve a s t a b i l i t y  of 

0.4-10-6 (a quarter of an element during one frame) the temperature s t a -  
b i l i t y  of 0.005-0.05°C i s  required. 

I n  television T~ must be r igidly connected w i t h  the frequency of 

the l ines .  

the allowable nonstabil i ty i s  2-8-10-~, i .e., temperature s tabi l izat ion 
is  not required. However, f o r  a long delay t i m e  temperature s tab i l iza-  
t i o n  becomes necessary, and when the frequency of the l ines  i s  unstable 
the delay time must follow the variations i n  fline. The following sys- 

t e m s  and variations i n  delay time are possible: mechanical systems i n  
which the transducer i s  displaced with respect t o  the transmitting me- 
dium (these are  possible i n  l iqu id  and magnetostrictive delay l ines)  or 
systems i n  which the geometric length of the delay l i ne  is  varied by 
forming it from two wedges ( in  these cases losses occur at  the jo in ts  
and control i s  achieved over f12 psec. 

W i t h  a delay equal t o  one l i n e  (e.g., i n  the SECAM system) 

I n  another themmechanical system the transducer is  attached t o  a 
bimetall ic p la te  whose length i s  selected i n  such a way tha t  the varia- 
t i on  of T a  with temperature i s  compensated by the displacement of the 

transzucer (Ref. 14) ( t h i s  system may be used f o r  the automatic control 
of -rd when fline varies).  In  another system the dispersion of ultrasonic 

osc i l la t ions  i s  used ( i n  t h i s  case the car r ie r  frequency i s  varied i n  ac- 
cordance with the variation of the frequency of l i nes  and i n  the tempera- 
ture). 

Signal-to -Noise Ratio 

I n  ultrasonic delay l i nes  the osci l la t ions reach the receiving 
transducer d i rec t ly  and a f t e r  reflections from the  w a l l s  of the transmit- 
t i ng  medium, as well as from heterogeneities i n  the medium. I n  mono- 
l i t h i c  delay l ines  there a re  a l so  reflections which differ f romthe  nomi- 
na l  number. The walls of the transmitting medium a re  covered with an 
absorbing material t o  combat false signals (Figure 5 ) ,  and the opposite 
end of the l i ne  i s  capped with an absorbing material and i s  s p l i t ,  e tc .  
I n  monolithic l i nes  the sound-absorbing material is  applied t o  the re- 
gions on the boundaries from which the s ignal  must not be reflected.  I n  
par t icu lar ,  it has been proposed that  channels be dril led i n  the mono- 
l i t h  and f i l l e d  with a sound-absorbing material. The signal-to-noise 
r a t i o ,  depending on the measures which have been taken, i s  20-60 db. 
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Input 

t o r  

Figure 5 

Figure 6 shows the attenuation i n  a delay l i ne  a s  a function of the 
product of the delay time and the band H - Z ~  f o r  mercury l i nes  (curve l), 

f o r  monolithic quartz l ines  with quartz transducers (2  and 2 ' ) ,  f o r  l ines  
with ceramic transducers (3), for l ines w i t h  tors ional  osci l la t ions (4), 
and f o r  magnetostrictive l i nes  ( 5  and 5' ) . Furthermore, b( 0) corresponds 
t o  losses i n  the transducer, and curves 2 * ,  5' a re  fo r  the case when the 
transducer and the l i n e  a re  mismatched t o  obtain a large bandpass. 
points on the curves correspond t o  various delay l ines .  
we can see tha t  the attenuation i s  increased when H T ~  is increased; the 

The 
From Figure 6 

slope variation i s  explained by the difference i n  attenuation f o r  various 

me&ia and the difference i n  the bandpass (when i f  = - af i s  small it i s  
f O  

necessary t o  increase the ca r r i e r ,  i .e.,  t o  increase the l inear  attenua- 
t ion) .  
t ion.  The bandpass of magnetostrictive l i nes  and of l ines  f o r  tors ional  
osci l la t ions i s  limited by the transducers. However, their valuable /35 
properties include their simplicity f o r  medium attenuation and smaller 
dispersion ( i n  l ines  with tors ional  osci l la t ions)  which leads us t o  ex- 
pect that l ines  of th i s  type w i l l  be designed f o r  greater Hz,. 

Quartz l i nes  with ceramic transducers produce the lowest attenua- 

Conclusions 

1. A t  the present t i m e ,  ultrasonic delay l i nes  make it possible t o  
store te levis ion signals f o r  a period of time from one l i n e  or less t o  
half a frame (and more). 
lowest attenuation among the piezoelectric l ines .  

Lines w i t h  ceramic shear transducers have the 

2. I n  recent times magnetostrictive delay l ines  have been brought 
t o  the forefront.  ' I n  a ser ies  of cases ( fo r  example, i n  the SECAM system) 
they may replace piezoelectric delay l ines .  
s t r i c t i v e  l ines  gives us a basis t o  assume that they w i l l  f i n d  a w i d e r  

The development of magneto- 



. ' .  
t 

. 

U 

Me -millisecond 
Figure 6 

application in television and engineering and the prospects of construct- 
ing a delay line for a period of one frame are approaching realization. 
This will permit the solution of a series of important problems in the 
development of television engineering. 

Moscow Electrotechnical Institute 
of Communications 
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